
Define and prepare the steady state

The steady state is the control state of a system, and can be defined
with metrics such as error rate, response time, or resource utilization.
The purpose of having a steady state is to validate the stability of the
application before any chaos experiments are run.

With Infrastructure as code, this could include checking to make sure
that all components are deployed.

Observe your system

Examine the architectural diagram and try to identify key components
to test.

Baseline your metrics

Make sure you're monitoring the system as it is and that metrics are
being collected to help you define that steady state quantitatively. You
should also set SLOs/SLIs per service so that you know when the
performance strays away from the steady state.

Build a hypothesis

A hypothesis should be formulated as a positive statement such as
"When an instance is shut down, the application recovers and switches
to another node within 10 minutes." It should be based on measurable
output.

In testing terminology, the hypothesis is what would typically determine
whether the test has passed or failed-- although chaos engineers
usually speak in terms of experiments rather than tests.

Set abort conditions

Setting an abort condition means determining the situations beyond
which it would not be meaningful to continue the experiment, or those
beyond which the experiment would be detrimental to the application
(especially if you're testing in production).

Set blast radius and magnitude



Plan in advance and try to limit blast radius and magnitude. Start small!
For example, run one experiment with only a 10% increase in load to
services.

Execute chaos experiments to disprove the
hypothesis

Introduce variables in the forms of experiments (latency, node
shutdown, etc.) to determine how they affect an application. Prioritize
these variables in terms of severity of frequency, and only do them one
at a time to start with.

Experiments are designed specifically to try to attack the application in
different ways to produce an outcome other than the hypothesized
one.

Environment

Chaos experiments are best done on production.

Analyze results

Re-test

Tweak the experiment parameters, explore "what if" scenarios, and
think of other experiments that might disprove the hypothesis.

Share your results

Automate

The harder it is to disrupt the steady state,
the more confidence we have in the
behavior of the system. If a weakness is
uncovered, we now have a target for
improvement before that behavior
manifests in the system at large.



Incorporate some experiments into the CI CD Pipeline and make them
run continuously, to minimize manual effort.

References
In the kitchen - a sprinkle of fire and chaos
Article/Using Chaos Engineering to Test Distributed Systems
Presentation/Using Chaos Engineering to Test Distributed
Systems
PRINCIPLES OF CHAOS ENGINEERING  Principles of Chaos
Engineering


