Watching
the

y watchers
observability

at Grafana O

. Labs

It's hard to be here at KubeCon without hearing the word "observability"-- a word that we
almost never use in any other context but somehow, when we're talking about complex
and modern computer systems, we all want to observe. We're all voyeurs. We don't just
want to watch-- we want to watch the watchers. But | wonder sometimes if we're missing
the point.

Watching the Watchers (KubeCon NA 2024) Page 1l of21

1l
B

Spike 1 Spike 2 Spike 3

Here's a real example of something that happened in production. ==More explanation of
graph==

In some ways, this was a success. We had everything instrumented. Our stack was
observable. So why wasn't this enough? Why was it that this problem was not a once-off
but a recurring problem that we, with our highly observable everything, couldn't resolve
for years?

Well, it's because observability isn't enough. Sure, it's observable, but when you have
complex systems, you don't know *where* to observe. You don't know what to look at. And
being observable says nothing about getting to the root cause of issues, much less fixing
them.

So if our goal is simply "observability", it's a pretty limited one. Observability is not the

end quality we want our systems to have; it's an incidental one. The goal should be
continuous reliability. Observability is just *one of* the means to that end.

Watching the Watchers (KubeCon NA 2024) Page 2 of 21

Anyone who's played a fantasy RPG knows that to get the good weapons, you need to go
to a blacksmith. Blacksmiths have forges. A forge consists of some sort of furnace where
metal is heated to make it malleable and hammered into shape. Forges let you make
durable weapons, but they require you to put them through fire first.

Image from: Green Beetle, Forging A Sword Pt 1: Every Stroke:
https://www.youtube.com/watch?v=halPwOzuo4k

Watching the Watchers (KubeCon NA 2024) Page 3 of 21

The Continuous Reliability FORGE

o Framework

» Observability
e Recovery

e Growth
 Engagement

AR

Continuous reliability is the process of putting our system through the FORGE.

I'll give examples for how we're doing all of these at Grafana, but first, maybe | should give
you a summary of who we even are.

Watching the Watchers (KubeCon NA 2024) Page 4 of 21

The Grafana stack

Loid OnCail

Promeiheus BMimif Grafana

-

g

Pyros-'covpe

Grafana is more than just Grafana
Everything here is open source, but we also have hosted versions of these, on Grafana
Cloud. We maintain some combination of this stack for people so that they don't have to.

Watching the Watchers (KubeCon NA 2024) Page 5 of 21

Framework

JAVAVAVAAVAVAVAY

Resilient infrastructure design

Watching the Watchers (KubeCon NA 2024) Page 6 of 21

Intemet

| Load Balancer |e---e-sesreemsmrmsmememimime e aeannaan I TTRNNI Y 1T A
Grafana Cloud

Ll Ly G conlinuous test

| _ f—_JJr _ | 3) :mmfmops.

_ e query query _,| resulis query query
T scheduler |<”| frontend [© 7| cache <" fontend € scheduler
n . Lt r 1 . F .
. Prometheus Alerts—»
chunks
cache :
ingester |«—»| ingester «—» ingester ‘ qQuerier querier querier querier querier
Key] J
I
—
—> EBlocks —_— Queries - l I l F:
—_— —
Samples > Rules J— e
— > Hashring —> Alerts Ges EEEE
i : . blocks r Y
L | Write path Read path
Routing Monitoring

(7m)
Example of Loki's microservices architecture
- 324 TB of logs a day

Watching the Watchers (KubeCon NA 2024) Page 7 of 21

& Grafana Enterprise Metrics

How we responded to a 2-hour outage in our
Grafana Cloud Hosted Prometheus service

@Tomwnkm 2021-03-26 - 4 min

- We have about 15 large Kubernetes clusters of GEM around the world

- Clusters are multi-tenanted

- We set limits for how much data and how quickly each customer can send, but a bug in
limits occurred

- Turns out that handling the initial error was more CPU-intensive than the happy path,
and it caused a cascading failure

Solutions:

- fix limits bug

- recreate overload scenario through k6 (we used it to test Mimir to hold 1.3 billion time
series for metrics)

https://grafana.com/blog/2021/03/26/how-we-responded-to-a-2-hour-outage-in-our-
grafana-cloud-hosted-prometheus-service/

Watching the Watchers (KubeCon NA 2024) Page 8 of 21

Instrumentation
- Beyla (eBPF)

- Alloy

- OTel

- manual

When you start a Kubernetes cluster, it's automatically instrumented with eBPF

Watching the Watchers (KubeCon NA 2024)

Page 9 of 21

= Mimir cluster health

The 'Status” panel shows an overview on the cluster health over the
time. Ta investigate failures, soe a specific dashboard:

= Writes
= Reads
« Rule evaluations

+ Alerting notifications.
+ Object storage

~ Writes

These panels show an overview on the write path. Requests rate and
Istency s measured on the gateway. To examine the write path in
detail, see a specific dashboard:

» Writes
* Writes resources

« Writes networking

+ Ovarview rasources
« Ovarview networking

~ Reads

These panels show an overview on the read path. Requests rate and
latency is measured on the gateway. To examine the read path in
detail, see a spacific dashboard:

* Reads

* Reads resources

« Reads networking

« Cverview resources
= Overview networking
« Querios

+ Gompactor

Status.

Writes

-

fule evalustions

Alesting notifications

Object storage
10:0

= <0000 = 0.0100+ = 0.0500+

W01 100 1025 10:30

Wirite requests | sec (gateway)

20K reafs
175K reafs

WO 020 W30 W40

— Do = dux = Sax

Read requests [sec (gateway)

200 reqls
75 reqis
180 reqis
125 reqis
106 reqis
75 reqis
50 reqis
5 reais
0 reqis
W W0 WA W0

WS MO0 MK

- = = Sax

We use Grafana to measure our stack
- This is an actual screenshot of our ops Mimir cluster
- Check out the 14M samples/sec that we ingest

Watching the Watchers (KubeCon NA 2024)

WA W40 1045 KD 1085 100 108 e

Write latency (gateway)

W0 020 1030

W40
— ith percentie — SOUN percontie — Average

Read latency (gateway)
s0s

40s

0s N | | ‘
08 I |

0

oms -

010 W20 1030 W40

= B8t porcontie — S0t percentle = Average

Firing alerts

MimirOpsRuleEvaluationFallures
y Fring for 12 130 49m 128
3 2 instances, 2 hidden by filters

WView alert rule CF

MimirOpsRuleEvaluationFallures
y Firing for 12d 130 48m 123
3 2instances, 2 hidden by filters

Wiew alert rule G

MimirOpsRuleEvaluationFailures.
5 Firing for 12d 130 &9m 125
o inatances 7 hidden by filters

View alert rule &f

Ingestion [sec

BMls
WM
12Mels
OMefs
Mz
BMals
aMefs
2Mels
Befs
040

w0 1030

= samples see — axemplars | sec

040 WSO 00 n

Quarias [soc

200 reafs
150 rea/s
W0 reals
50 row/s |

Qreq/s
0 WI 04D W50

= “active series” quedies == “label name cardinalty” queries
= “labed valup cardinality” quorios == "Labal uaki0s® queties
= “label names’ quaries — motadats quaries — Instant queries

- . s .k

w:20 noo M

Page 10 of 21

workloads

Meta-Instance / mmmal ager
|

|
Operati}aés uster isomewhere
far away '

Meta-Instance Alertmanager

(13m)

We do quite a bit of metamonitoring. We've strayed a bit into paranoid territory, but is it
paranoid if bad stuff actually happens?

- On the leftis our production cluster and backup. These clusters are instrumented
through Alloy, which routes information to our operations cluster. Ops cluster has real
data, so it's not a test environment, but it is also where we deploy things first (ex: Adaptive
Logs)

- Ops cluster monitors the monitors. We have logs, traces, metrics

- For every Prometheus, we have a meta-Prometheus. it's always an HA pair (one in the
Americas, one in Europe). They scrape each other and Alertmanager

- We have a Prometheus that is monitoring Mimir which is monitoring Mimir

- Global Alertmanager cluster with instances in the EU and US that gossip among
themselves

- We use OnCall to handle incidents

- Dead Man's Snitch in case OnCall fails (this has happened) - heartbeat

- BTW this exists across three cloud providers: AWS, GCP, and Azure

- 13% of our costs are just on our own observability

Watching the Watchers (KubeCon NA 2024) Page 11 of 21

Recovery

| How do we recover from failures?

. Grafana OnCall 4»¢ 1}
Auto Remediation: Starting "Scaling Orders Database Disk" Action through Github Action &
Terraform ([\s‘

alexki

(19m)

OnCall

- managing on-call rotations

- auto remediation for common issues: in this case, a workflow was started via webhook to
GitHub Action that upscaled a disk through Terraform

- Alerts: Slack and mobile

Every team is responsible for what they build. There's no wall that they chuck their code
over to some ops team that have sole responsibility for everything

Watching the Watchers (KubeCon NA 2024) Page 12 of 21

Growth

@6 v

- k6 to test APl endpoints, synthetic monitoring

- Faro for frontend observability of: Grafana Cloud, OnCall, Grafana Cloud k6, synthetic
monitoring, Kubernetes monitoring app + more

- Keda to autoscale our stuff. Ex: A Prometheus instance monitors our ops Mimir and the

metrics in that Prometheus are used to determine whether to scale Mimir

Watching the Watchers (KubeCon NA 2024)

Page 13 of 21

Testing Grafana

Grafana
instance

m%&

GrafanaBench

Dashboards

/7,

Grafana Bench

- wrapper around k6

- Runs in local development, CI/CD, and rolling release channels
- Consistent log output between k6 and Playwright

- Docker image with all dependencies

Watching the Watchers (KubeCon NA 2024) Page 14 of 21

Wuarterly hackathons Cross-pollination “

Relentless Default to
dogfooding transparency

- Hackathons: 60% moved forward, 30% shipped. Ex: graphical query builder, k6 Studio,
GrotBot, Explore apps, FlameGrot Al
- dogfooding is highly encouraged
- cross-pollination among teams is encouraged
- Default to transparency... even when it's "too much" for some people's comfort
- Learning in public: RAD videos, k6 "week of load testing"

Watching the Watchers (KubeCon NA 2024) Page 15 of 21

¢y Cortex

= Home > Dashboards » New dashboard W Addv @ @ ¢« @ 2023-07-11 21:00:25 to 2023-07-10 2218:4B UTE ~ >

o

MNew Panel @

200000

— Spike 1 Spike 2 Spike 3

240000

220000 Sudden norease of er-mimir-ipgester-ma- m:::’;xm':“ :ﬁ:m""

I'Wﬂipulh-lwuws (mole it Was not zero immediately stari OOMing

200000

B0

W0 | Recovery

Effpris to stabuze the chuster
prod-us-central-0 zone-a r T -
1000 ngesters start shutling down A .'
one minute
126990 later =4x ramc
100
Before 4
#0000 13k requists por # -
second al gateway ’ 1 l
50000
‘ﬂ I m {% Al f
20000) I"MI 1)?"'11‘ JL;‘ ir '
1 Al
o 4 ¥ .
2405 2400 e kis ks ey 2215

= (serves eortanw, SINUS £o08n 2007 = (Servieds"Coren W’ BB _oSes 0T = (Mervices COMEL.GW, SIANLS Cde=4007] == (SEvicE="EOrtEn-w rte W', 11a0 oo 500
= {evioesEarlm =g, et codes S027] = [Mervices Eoilengw, slita cote 504 — [namespeces corns-dedcaled 14", sstetuiset

o geste poa’)

Back to this production incident. We finally solved this mystery: "There's an OSS project
for that". Pyroscope.

Watching the Watchers (KubeCon NA 2024) Page 16 of 21

T e % AT TR PR IR IR S0 4% T BTN

- Pyroscope is a continuous profiler, but it doesn't save every single measurement. Instead
it saves the shape of the utilisation as a whole, to make these flamegraphs.

- You can diff the flamegraphs (red) to see what changed.

- In this case, we were able to figure out exactly what process was causing the issue.

- Because of eBPF, everything in Grafana is profiled using Pyroscope now

- It wasn't just observability, it was continuous reliability that got us there

Watching the Watchers (KubeCon NA 2024) Page 17 of 21

Specifically, the continuous reliability forge requires these five factors:

(RIGHT) It means having the right *Framework* in place: an underlying architecture that is
resilient from the get-go and doesn't need to be rearchitected later when the system
grows.

(RIGHT) It means always having continuous observability through the use of auto- and
manual instrumentation that let us peek under the hood at any time. It involves meta-
monitoring and paranoid observability.

(RIGHT) It also means having *Recovery* mechanisms set up so that when things do go
wrong, there is a process for the system to be fixed, reforged if needed, and sent off into
battle again.

(RIGHT) It means leaving room for *Growth*: making sure that there's enough slack
between components for new, better measures to be implemented. It means a system of
continuous testing to make sure regressions don't get introduced.

(RIGHT) And continuous reliability also depends on the *Engagement* of SREs, of software
developers, of stakeholders, and of people like us who are interested in making sure our
systems keep improving.

It's not about observability. It's not about watching. It's about what you do afterwards. We
still have production incidents. Swords still break in battle. But those that do, get melted
down or reforged into something more reliable. We watch the watchers, but we use what
we see to inch

Watching the Watchers (KubeCon NA 2024) Page 18 of 21

towards continuous reliability.

Watching the Watchers (KubeCon NA 2024) Page 19 of 21

nicole.to/kubeconslc
@) grafana.com

D @grafana, @nicolevdh
(©® @nicole@pkm.social

© nicole@grafana.com

Watching the Watchers (KubeCon NA 2024) Page 20 of 21

Watching the Watchers (KubeCon NA 2024) Page 21 of 21

https://gra.fan/slcmeta
https://gra.fan/slcmeta
https://gra.fan/slcmimirtest
https://gra.fan/slcmimirtest
https://gra.fan/slclimits
https://gra.fan/slclimits
https://gra.fan/slclabels
https://gra.fan/slclabels
https://gra.fan/slcpriorities
https://gra.fan/slcpyrodemo
https://gra.fan/slcpyroscope
https://www.youtube.com/watch?v=ha1PwOzuo4k

