
Watching
the

watchers

Nicole van der Hoeven, Senior Developer Advocate

How we do
observability
at Grafana

Labs

Watching the Watchers (KubeCon NA 2024)

It's hard to be here at KubeCon without hearing the word "observability"-- a word that we
almost never use in any other context but somehow, when we're talking about complex
and modern computer systems, we all want to observe. We're all voyeurs. We don't just
want to watch-- we want to watch the watchers. But I wonder sometimes if we're missing
the point.

Page 1 of 21

🔥 Mimir

Watching the Watchers (KubeCon NA 2024)

Here's a real example of something that happened in production. ==More explanation of
graph==

In some ways, this was a success. We had everything instrumented. Our stack was
observable. So why wasn't this enough? Why was it that this problem was not a once-off
but a recurring problem that we, with our highly observable everything, couldn't resolve
for years?

Well, it's because observability isn't enough. Sure, it's observable, but when you have
complex systems, you don't know *where* to observe. You don't know what to look at. And
being observable says nothing about getting to the root cause of issues, much less fixing
them.

So if our goal is simply "observability", it's a pretty limited one. Observability is not the
end quality we want our systems to have; it's an incidental one. The goal should be
continuous reliability. Observability is just *one of* the means to that end.

Page 2 of 21

Watching the Watchers (KubeCon NA 2024)

Anyone who's played a fantasy RPG knows that to get the good weapons, you need to go
to a blacksmith. Blacksmiths have forges. A forge consists of some sort of furnace where
metal is heated to make it malleable and hammered into shape. Forges let you make
durable weapons, but they require you to put them through fire first.

Image from: Green Beetle, Forging A Sword Pt 1: Every Stroke:
https://www.youtube.com/watch?v=ha1PwOzuo4k

Page 3 of 21

The Continuous Reliability FORGE

Framework
Observability
Recovery
Growth
Engagement

Watching the Watchers (KubeCon NA 2024)

Continuous reliability is the process of putting our system through the FORGE.

I'll give examples for how we're doing all of these at Grafana, but first, maybe I should give
you a summary of who we even are.

Page 4 of 21

The Grafana stack

Grafana

Faro

Loki OnCall

Alloy

OTel

Beyla

k6

Tempo

Pyroscope

Prometheus Mimir

Watching the Watchers (KubeCon NA 2024)

Grafana is more than just Grafana
Everything here is open source, but we also have hosted versions of these, on Grafana
Cloud. We maintain some combination of this stack for people so that they don't have to.

Page 5 of 21

Framework

Resilient infrastructure design

Watching the Watchers (KubeCon NA 2024) Page 6 of 21

Watching the Watchers (KubeCon NA 2024)

(7m)
Example of Loki's microservices architecture
- 324 TB of logs a day

Page 7 of 21

🔥 Grafana Enterprise Metrics

Watching the Watchers (KubeCon NA 2024)

- We have about 15 large Kubernetes clusters of GEM around the world
- Clusters are multi-tenanted
- We set limits for how much data and how quickly each customer can send, but a bug in
limits occurred
- Turns out that handling the initial error was more CPU-intensive than the happy path,
and it caused a cascading failure
Solutions:
- fix limits bug
- recreate overload scenario through k6 (we used it to test Mimir to hold 1.3 billion time
series for metrics)

https://grafana.com/blog/2021/03/26/how-we-responded-to-a-2-hour-outage-in-our-
grafana-cloud-hosted-prometheus-service/

Page 8 of 21

Observability

Watching the Watchers (KubeCon NA 2024)

Instrumentation
- Beyla (eBPF)
- Alloy
- OTel
- manual

When you start a Kubernetes cluster, it's automatically instrumented with eBPF

Page 9 of 21

Watching the Watchers (KubeCon NA 2024)

We use Grafana to measure our stack
- This is an actual screenshot of our ops Mimir cluster
- Check out the 14M samples/sec that we ingest

Page 10 of 21

Watching the Watchers (KubeCon NA 2024)

(13m)
We do quite a bit of metamonitoring. We've strayed a bit into paranoid territory, but is it
paranoid if bad stuff actually happens?
- On the left is our production cluster and backup. These clusters are instrumented
through Alloy, which routes information to our operations cluster. Ops cluster has real
data, so it's not a test environment, but it is also where we deploy things first (ex: Adaptive
Logs)
- Ops cluster monitors the monitors. We have logs, traces, metrics
- For every Prometheus, we have a meta-Prometheus. it's always an HA pair (one in the
Americas, one in Europe). They scrape each other and Alertmanager
- We have a Prometheus that is monitoring Mimir which is monitoring Mimir
- Global Alertmanager cluster with instances in the EU and US that gossip among
themselves
- We use OnCall to handle incidents
- Dead Man's Snitch in case OnCall fails (this has happened) - heartbeat
- BTW this exists across three cloud providers: AWS, GCP, and Azure
- 13% of our costs are just on our own observability

Page 11 of 21

Recovery
How do we recover from failures?

Watching the Watchers (KubeCon NA 2024)

(19m)
OnCall
- managing on-call rotations
- auto remediation for common issues: in this case, a workflow was started via webhook to
GitHub Action that upscaled a disk through Terraform
- Alerts: Slack and mobile

Every team is responsible for what they build. There's no wall that they chuck their code
over to some ops team that have sole responsibility for everything

Page 12 of 21

Growth

Watching the Watchers (KubeCon NA 2024)

- k6 to test API endpoints, synthetic monitoring
- Faro for frontend observability of: Grafana Cloud, OnCall, Grafana Cloud k6, synthetic
monitoring, Kubernetes monitoring app + more
- Keda to autoscale our stuff. Ex: A Prometheus instance monitors our ops Mimir and the
metrics in that Prometheus are used to determine whether to scale Mimir

Page 13 of 21

Testing Grafana

Watching the Watchers (KubeCon NA 2024)

Grafana Bench
- wrapper around k6
- Runs in local development, CI/CD, and rolling release channels
- Consistent log output between k6 and Playwright
- Docker image with all dependencies

Page 14 of 21

Engagement

Quarterly hackathons Cross-pollination

Relentless
dogfooding

Default to
transparency

Watching the Watchers (KubeCon NA 2024)

- Hackathons: 60% moved forward, 30% shipped. Ex: graphical query builder, k6 Studio,
GrotBot, Explore apps, FlameGrot AI
- dogfooding is highly encouraged
- cross-pollination among teams is encouraged
- Default to transparency... even when it's "too much" for some people's comfort

- Learning in public: RAD videos, k6 "week of load testing"

Page 15 of 21

🔥 Cortex

Watching the Watchers (KubeCon NA 2024)

Back to this production incident. We finally solved this mystery: "There's an OSS project
for that". Pyroscope.

Page 16 of 21

Watching the Watchers (KubeCon NA 2024)

- Pyroscope is a continuous profiler, but it doesn't save every single measurement. Instead
it saves the shape of the utilisation as a whole, to make these flamegraphs.
- You can diff the flamegraphs (red) to see what changed.
- In this case, we were able to figure out exactly what process was causing the issue.
- Because of eBPF, everything in Grafana is profiled using Pyroscope now
- It wasn't just observability, it was continuous reliability that got us there

Page 17 of 21

The Continuous Reliability FORGE

F O

G

F is for
Framework

R
R is for

Response

G is for Growth

O is for
Observability

E
E is for

Engagement

Watching the Watchers (KubeCon NA 2024)

Specifically, the continuous reliability forge requires these five factors:

(RIGHT) It means having the right *Framework* in place: an underlying architecture that is
resilient from the get-go and doesn't need to be rearchitected later when the system
grows.

(RIGHT) It means always having continuous observability through the use of auto- and
manual instrumentation that let us peek under the hood at any time. It involves meta-
monitoring and paranoid observability.

(RIGHT) It also means having *Recovery* mechanisms set up so that when things do go
wrong, there is a process for the system to be fixed, reforged if needed, and sent off into
battle again.

(RIGHT) It means leaving room for *Growth*: making sure that there's enough slack
between components for new, better measures to be implemented. It means a system of
continuous testing to make sure regressions don't get introduced.

(RIGHT) And continuous reliability also depends on the *Engagement* of SREs, of software
developers, of stakeholders, and of people like us who are interested in making sure our
systems keep improving.

It's not about observability. It's not about watching. It's about what you do afterwards. We
still have production incidents. Swords still break in battle. But those that do, get melted
down or reforged into something more reliable. We watch the watchers, but we use what
we see to inch

Page 18 of 21

towards continuous reliability.

Watching the Watchers (KubeCon NA 2024) Page 19 of 21

nicole.to/kubeconslc
grafana.com
@grafana, @nicolevdh
@nicole@pkm.social
nicole@grafana.com

Watching the Watchers (KubeCon NA 2024) Page 20 of 21

References
(blog) How we use metamonitoring Prometheus servers to monitor all other
Prometheus servers at Grafana Labs
(blog) How we scaled our new Prometheus TSDB Grafana Mimir to 1 billion active
series
(blog) How we responded to a 2-hour outage in our Grafana Cloud Hosted
Prometheus service
(blog) How adding Kubernetes label selectors caused an outage in Grafana Cloud
Logs — and how we resolved it
(blog) How a Production Outage Was Caused Using Kubernetes Pod Priorities
(slides) Pyroscope demo
(video) How to do continuous profiling right, Grafana Office Hours
(people) Erik Sommer, Bryan Boreham, Ryan Perry, Pablo Chacin, Kostas Pelelis,
Dee Kitchen, Jenny Lam, Bret Barker, Kristian Deppe

(image credit) Green Beetle, Forging A Sword Pt 1: Every Stroke

Watching the Watchers (KubeCon NA 2024) Page 21 of 21

https://gra.fan/slcmeta
https://gra.fan/slcmeta
https://gra.fan/slcmimirtest
https://gra.fan/slcmimirtest
https://gra.fan/slclimits
https://gra.fan/slclimits
https://gra.fan/slclabels
https://gra.fan/slclabels
https://gra.fan/slcpriorities
https://gra.fan/slcpyrodemo
https://gra.fan/slcpyroscope
https://www.youtube.com/watch?v=ha1PwOzuo4k

